Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Xian-Shu Fu, ${ }^{\text {a }}$ * Yan Zhang, ${ }^{\text {b }}$ Jun-Wei Sun ${ }^{\text {a }}$ and Xiao-Xia Yu ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Foreign Languages, China Jiliang University, Hangzhou 310018, People's Republic of China

Correspondence e-mail:
fuxianshu2003@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 2-Bromo-3,4,5-trimethoxybenzyl 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{8}$, was synthesized in an anhydrous medium at 293 K . The five-membered ring adopts an envelope conformation. The dihedral angle between the two benzene rings is $2.6(1)^{\circ}$.

## Comment

The title compound, (I), is a key intermediate of biphenyl derivatives, which may act to moderate liver ailments and thus be effective in the treatment of acute and chronic hepatitis (Song \& Xiao, 1982).


The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles are unremarkable. The fivemembered ring adopts an envelope conformation with atom C 7 as the flap. The dihedral angle between the C1-C6/O2/O3 and C11-C16 planes is $2.6(1)^{\circ}$, and the angle between the $\mathrm{C} 9 /$ $\mathrm{C} 10 / \mathrm{O} 4 / \mathrm{O} 5$ and $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{O} 2 / \mathrm{O} 3$ planes is $21.8(2)^{\circ}$. The $\mathrm{C}-\mathrm{O}-$ $\mathrm{C}-\mathrm{C}$ torsion angles, which describe the orientation of the methoxy groups with respect to the attached rings, are given in Table 1.

Weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are observed. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to stabilize the crystal structure (Table 2). In addition, a short $\mathrm{Br} 2 \cdots \mathrm{O} 4(1-x,-y, 1-z)$ contact of 3.065 (2) $\AA$ is observed.

## Experimental

The title compound was prepared according to the literature procedure of Bringmann et al. (2003). The reaction was initiated by the addition of one molar equivalent of (2-bromo-3,4,5-trimethoxyphenyl)methanol, 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylic acid, dicyclohexylcarbodiimide and 0.2 molar equivalent of 4 (dimethylamino)pyridine to dichloromethane. The mixture was stirred at room temperature for 12 h . A white powder (m.p. 394 K ) resulted (yield $88 \%$ ) and single crystals of (I) suitable for X-ray

Received 15 June 2006
Accepted 25 June 2006
analysis were obtained by slow evaporation of a dichloromethane solution.

## Crystal data

| $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{8}$ | $V=1009.2(3) \AA^{3}$ |
| :--- | :--- |
| $M_{r}=534.15$ | $Z=2$ |
| Triclinic, $P \overline{1}$ | $D_{x}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$ |
| $a=7.9131(13) \AA$ | Mo $K \alpha$ radiation |
| $b=9.5314(15) \AA$ | $\mu=4.06 \mathrm{~mm}^{-1}$ |
| $c=13.949(3) \AA$ | $T=294(2) \mathrm{K}$ |
| $\alpha=77.692(12)^{\circ}$ | Block, colourless |
| $\beta=79.132(17)^{\circ}$ | $0.12 \times 0.10 \times 0.08 \mathrm{~mm}$ |
| $\gamma=88.946(18)^{\circ}$ |  |

## Data collection

Rigaku Saturn diffractometer

## $\omega$ scans

Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.642, T_{\text {max }}=0.737$

## Refinement

Refinement on $F^{2}$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0412 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=0.93$
4595 reflections
264 parameters
H-atom parameters constrained
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0077 (10)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

| $\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$ | $-7.4(4)$ | $\mathrm{C} 18-\mathrm{O} 7-\mathrm{C} 14-\mathrm{C} 15$ | 81.7 (3) |
| :--- | ---: | ---: | ---: |
| $\mathrm{C} 17-\mathrm{O} 6-\mathrm{C} 13-\mathrm{C} 12$ | $86.8(3)$ | $\mathrm{C} 19-\mathrm{O} 8-\mathrm{C} 15-\mathrm{C} 16$ | $1.1(4)$ |

Table 2
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 5$ | 0.93 | 2.37 | $2.713(3)$ | 101 |
| $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.96 | 2.59 | $3.533(3)$ | 166 |
| $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 5$ | 0.93 | 2.37 | $2.735(3)$ | 103 |
| $\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{O}^{\mathrm{ii}}$ | 0.96 | 2.57 | $3.287(3)$ | 132 |
| $\mathrm{C} 17-\mathrm{H} 17 C \cdots \mathrm{Br} 2$ | 0.96 | 2.93 | $3.468(3)$ | 117 |

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+1,-y,-z+2$.


Figure 1
A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $35 \%$ probability level and H atoms are represented by circles of arbitrary size.

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA . U_{\text {iso }}(\mathrm{H})$ values were set equal to $x U_{\mathrm{eq}}(\mathrm{C})$, where $x=1.5$ for methyl H atoms and 1.2 for all others.

Data collection: CrystalClear (Molecular Structure Corporation \& Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure.

## References

Bringmann, G., Breuning, M., Henschel, P. \& Hinrichs, J. (2003). Org. Synth. 79, 72-73.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation \& Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, W. Z. \& Xiao, P. G. (1982). Chin. Traditional Herbal Drugs, 13, 40-43.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

